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Image analysis, as developed by 
Guttman [1953], is the partitioning of an 
observable random vector, X, into an ima- 
ge vector, WX, and an anti -image vector, 
(I -W)X. 

(1) X = WX + (I -W)X 

where WX is the minimum squared error 
linear estimate of X such that 

diag W = 

Diag W (implies W is a square matrix) is 
a diagonal matrix with elements on the 
main diagonal identical to the main di- 
agonal of W. 

Let R be the sample correlation 
matrix associated with a random sample 
of p > N observations (each N 1) 

on X. 
Theorem 1: The coefficient regression 
matrix, W (defined above), can be shown 
to by any solution to the system 

(2) 

(3) 

Diag W = 

WR = R - D 

for some diagonal matrix D. 
A literature search has not re- 

vealed a general solution to the system 
(2) and (3), but only a solution in the 
case that R is non -singular. This solu- 
ti1n follows by post -multiplying (3) by 
R to yield 

(4) W = I - DR 1, 

and then impose the restriction (2) to 
show that 

(5) D (diag R -1 ) 
-1 

Current computer programs in 
image covariance factor analysis, for 
example in the Statistical Programs in 
the Social Sciences (SPSS), use (4) and 

are not operable for singular R. 
The property that each element of (5) is 
non -negative, and several other proper- 
ties shown by Guttman [1956] have made 
(5) a nearly universal estimate of the 
covariance of the "unique" variables in 
factor analysis. In order that image 
analysis might be more generally used 
and reasonable estimates for factor 
analysis developed, a general solution 
to Theorem 1 is now developed. The fol- 
lowing preliminary results are used to 
develop Theorem 2. R represents the 
pseudo- inverse of R, as defined in 
Boullion and Odell [1971]. 

Lemma 1: There are no zeros on the 
main n di diagonal of R +. 
Notation: A = diag(I - R +R) = 
(I - diag R R). 

Theorem 2: A solution to the system of 
equations 
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W = R - D 

D is diagonal 

diag W = 
is 
(6) Wo = I - (I - AA+)(diag R+)-1 

R+ 

-A+ ( I R R+ 
and 

(7) Da (I - +)(diag R -1. 

In general, all solutions to Theorem 
2 are of the form 

W = I - (I A A 
+) R+ 

+H2 (I - R R + ) 

for some H and H where H is diagonal. 
Theorem 2 Presents the solution when 
H2 is also diagonal. 

Factor Analysis. 
Factor analysis hypothesizes the 

existence of an integer M, 0 < M< N, and 
random vectors Y and U such that 

(8) X = Y + U 
Nxl NXM NxM NXl 

where A is an N x M matrix of constant 
coefficients and 

E(Y) = E(U) = 

eov(Y,Y) = I 

Cov(Y,U) = 

Cov(U,U) is diagonal. 

This model implies the following parti- 
tioning of the correlation matrix: 

(13) R = AAT + Cov(U,U) 

Two general methods exist for fit- 
ting data to this model. TMe first (1) 

is to initially estimate AA with R -Do, 
then use one of three criteria to re- 
duce the rank of R -Do. The three 
criteria are principal factor analysis 
(PFA), cannónical factor analysis (CFA), 
and alpha factor analysis (AFA). These 
three criteria are discussed later. The 
second method (2) is to initially esti- 
mate AA with the image movariance Tatrix, 
G Cov(W0X,W0X) = WoR Wo R + D0R Do 
- 2D0, then use a "rank reducing" method 
on G. 

Neither method has been possible 
for singular R, although iterative 
approximation schemes have been developed 
for the first (1) method. Tests of sig- 
nificance for "goodness of fit" exist for 
only one method, CFA, and then only 
under assumptions of normality. Hence, 
the present model- fitting methods are 
unsatisfactory, often giving rough approx- 
imations with gross errors. 

Y is interpreted as the common 
factors. This means that conceptually 



AY and WX are identical, yet Y is not a 
linear combination of X. (A proof is in 
Pore [1973]). Also, image analysis 
makes a strong argument against the 
factor analysis model including equation 
(12): since the anti -image covari- 
ance matrix Cov(I -W)X, (I -W .X,is not 
diagonal. 

These criticisms, coupled with the 
experience of researchers declaring 
that equation (12) was not a signifi- 
cant assumption in their analyses, has 
led the quthor to drop this assump- 
tion and continue the analysis. This 
"relaxed" factor analysis model can not 
only be precisely fit with any set of 
data (for all M, 0 < M < N) but may 
such solutions exist. Hence, to res- 
trict it for more meaningful interpre- 
tations, the common factors, Y, are 
restricted to being a linear compres- 
sion of X. This is 

(14) Y =BX 
where B is a full rank N x M matrix of 
unknown constant coefficients. The 
"modified" factor analysis model (MFA) 
is given by 

where 

and 
(15) 

X=AY+U, 
E(Y) = E(U) = 

Cov(Y,Y) = I, 

Cov(Y,U) = 

Y = BX. 

It can easily be shown that 
(16) 

A = RBT 
and 
(17) U = (I - RBTB)X, 

with the only restriction on B being 
that it is M N and satisfies 

(18) BRBT I. 

The researcher need no longer esti- 
mate common factor scores for particu- 
lar individuals. They are specified in 
the model (15) as a linear compression 
of the observation. This also makes 
interpretation of Y a precise linear 
compression of X. 

In being so general the MFA model 
allows data to be fitted to the model in 
ways that are meaningless to the re- 
searcher. That is, thare exist matrices, 
B, such that the MFA model is satisfied, 
yet y is uninterpretable. The problem 
is that 

BRBT I 

does not sufficiently restrict B to 
meaningfull solutions. Classical parti- 
tioning procedures may be imposed to 
optimize interpretability. One applica- 
tion of this model, MPC, is to partition 
B as 

B = PA, 
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so that AX are the principal components 
of X. P then reduces the rank to the M 
barest principal. cempbhente.hnd stàles 
B so that (18) is satisfied. This is 
one meaningful way to select B, but it 
is not in keeping with the concepts of 
factor analysis: that is, it does 
nothing toward separating error and 
underlying factors, etc. The following 
method is designed to do just that. 
Application: B is partitioned so that 

(19) B = PW 

where WX is the image of X and P, an 
M N matrix, reduces the rank of B and 
scales it so the (18) is satisfied. 
(See (1) and Theorem 2 for an explicit 
definition of W). 

The superior properties of the 
image vector in factor analysis have 
been discussed. It is, conceptually, 
the type of common factor "filter" 
for which the researcher uses factor 
analysis. Y, then, represents a linear 
compression of the image of X. The 
precise type of linear compression 
will depend on the researcher's criteria 
for optimization. Classical criteria 
include principal components, canonical 
correlation, and generalizability. 
Methods using each of these criterion 
are now presented. 

MFA Applied to PFA Criterion (MPF). 
PFA ie the method where Cov(U,U) 

is estimated with Do of Theorem 2, and 
then the largest M principal components 
Óf R -Do are extracted. MFA dollows the 
same principle. The main difference 
is that the classical factor analysis 
model is not being approximated, hence 
estimates of Cov(U,U) are no longer 
diagonal. Image theory fustifies 
using the anti -image covariance matrix 
as an initial extimate of D. The pro- 
cedure is, then, to extract the largest 
M principal components from the image 
covariance matrix. 

The image covariance matrix can be 
shown to be 

(20) G = R + DoR +Do 2D o. 

Application: Let E be the N N 
p.s.d. diagonal matrix with the eigen- 
values of G on the main diagonal in 
descending order and H the respective 
N x N eigenvector matrix such that 

[Ei 

(21) G = HEBT [H1 H2] 

= H1E1H1 + 
E H2 

for partitionings of E and H such that 
E1 is M M p.d., and H1 is N M. 

Now P in (19) is 



(22) P = E-IH1. 

Notice that 
ERBT = 

(23) 

= E1- 2H1G H1T 

E1- 2E1E1} 

= I. 

BX is the scaled linear compression of 
the image variables that retains the M 
largest principal components of the 
image variables. Those researchers 
partial to PFA will find the same 
favorable principles in MPF, but 
applied to the image variables, tather 
than a hypothetical set of variables 
with covariance R -D. 

MFA Applied to CFA Criteria (MCF). 
CPA is the method of constructing 

factors, Y, that have maximum canonical 
correlation with the observations X. 
There are at least two possible ways 
to apply this principle to MFA. 
These are: (1) maximizing the correla- 
tion of Y and X, as above, with the 
restriction Y = PWX (2) maximizing the 
canonical correlation of Y and WX, with 
the restriction Y = PWX. The first 
method is what will be used to develop 
MCF. The second method remains gnde- 

±QTGQ[ei]-i - AI = O. 

where the X is the canonical correlation 
involved. 
Application: Let (u.] be the p.d. di- 
agonal matrix of eigeAvalues of 

[e. +QTGQ[e.] in descending order, 
an& S the respective matrix of eigen- 
vectors. 

It can be shown that 

(29) P 
1 [ei] 

Notice that (18) is assured by 

G 

and dt follows hat 
PGP = I. 

The researcher preferring CFA will 
find MCF more theoretically defensible, 
yet based on the same optimization pro- 
cedure. MCF also incoropates the 
properties of image analysis, hence 
optimization is bi- dimensional, rather 
that simply in the one aspect, correla- 
tion. 

MFA Applied to AFA Criteria (MAF). 
The AFA criterion is to define the 

common factors in such a way that their 
reliability coefficient is maximized. 
MAF will use the same reliability 
coefficient,a , that AFA used. (Tryon 
(1957] has shown that practically all 

veloped. 
Proceeding in the fashion devel- 

oped for CFA: 

reliability coefficients 
to a.) The a 

N 

are equivalent 
coefficient is 

(Trace AA T) w 

1 
(24) Cov(Y,Y) = D N 

AA 
T 

w 
(25) Cov(X,X) = R where w is the coefficient vector in 
(26) Cov(X,Y) = RWTPT = A. defining the common factors 

Hence, 

matrix 

has the super 

I A 

A R 

(30) Y covariance 
By substituting 
AA' with G (defined 

(31) 

= 

the initial estimate 
by (20)) yields 

w 
T 

- 

of 

a 
w G w 

Following the same procedure as 
Anderson (1957] (Chapter 12), 

AR! o 

but since our' estimate of is G, 
the image covariance matrix, then 

(28) IG - XRI = 0. 

Now since R can be written 

R = 
T 

where [e.] is an r x r p.d. diagonal 
matrix, is the rank or R, and Q is 
an N r matrix of eigenvectors of R 
respective to [ei] then (28) implies 
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which, in turn, yields as identical ei- 
genvalue equation as in AFA (see Raiser 
and Caffrey [1965]) except R - D is 
replaced by G. Hence, 

(32) (H 1GM1- U2I)e =0 
where H2 = I - D. 

A ?plication: Let (e.] be the N x N 
diagonal matrix of eigenvalues of 

-1-1, i H GH in descending order. Also let 
Q be the respective eigenvector matrix. 
It can be shown that 

P = (411.4. 



Notice that 
PGPT =I, 

hence the restrictions for MFA are 
satisfied. Since P is the objective 
of the procedure above, it differs 
slightly from AFA; but the principle, 
general method of analysis, and inter- 
pretability are all identical to 
AFA. Although AFA is not as widely 
used as the other forms of factor 
analysis, researchers may find an in- 
creasing need for psychometric sampling 
(or Q- as it is sometimes 
called: [Rummel, 1970]). As re- 
searchers do, they may find AFA claims 
the type of analysis they are looking 
for; but MAF will do likewise, and it 
will fit a model precisely, as 
opposed to the approximation techni- 
que of classical methods. 
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